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Abstract

This paper proposes a gray-scale inverse Hough transform (GIHT) algorithm which is combined with a modified gray-scale Hough
transform (GHT). Given only the data of the Hough transform (HT) space and the dimensions of the image, the GIHT algorithm reconstructs
correctly the original gray-scale image. As a first application, the GIHT is used for line detection and filtering according to conditions
associated with the polar parameters, the size and the gray-scale values of the lines. The main advantage of the GIHT is the determination of
the image lines exactly as they appear, i.e. pixel by pixel and with the correct gray-scale values. To avoid the quantization effects in the
accumulator array of the GHT space, inversion conditions are defined which are associated only with the image size. The GIHT algorithm
consists of two phases, which are the collection of gray-scale information stored in the accumulator array and the extraction of the final image
according to the filtering conditions. Experimental results confirm the efficiency of the proposed method.q 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The Conventional Hough Transform (CHT) is a well-
known technique for straight line detection in binary
images. It is a voting process where each pixel of the
image space votes for several possible patterns (straight
lines) passing through that pixel. The votes are stored in
an accumulator array, the peak values of which provide
the parameters of the lines in the original image. The
CHT is commonly used for straight line detection and was
first introduced by Hough [1]. Duda and Hart [2] using the
polar form of straight lines adapted the HT technique in
discrete binary images. The advantages of the HT are
associated with its robustness to image noise as well as its
discrimination ability against unwanted shapes [3].
However, the HT can determine only the line parameters
but not the exact position of the pixels in the lines. Other
disadvantages of the HT are associated with its large storage
and computational requirements. For this reason many
approaches have been proposed in the literature, regarding
the reduction of the computation time and memory require-
ments while others have focused on the investigation of the
nature of the HT space [4–14]. All these methods are appli-
cable to binary images. Thus, the application of the CHT to

a gray-scale image requires its conversion to a binary image.
The main disadvantage of this approach is that the
gray-scale information of the source image is lost.

Until now, only a few methods have been proposed for
using the HT in gray-scale images. Shapiro [15] used a
method that replaces the original image by its digital half-
toning (DH) equivalent. Specifically, several DH techniques
that minimize the integral approximation error of using the
DH Hough transform as an approximation of the Radon
transform of a gray-scale image are investigated. In an
approach proposed by Lo and Tsai [16] a four-dimensional
accumulator array is employed. Specifically, each pixel
�xi ; yi� in the image space is associated with its gray-scale
value gi and each accumulator cellC�uj ; rj;gi� in the
so-called gray Hough parameter counting space is con-
sidered as a function of three parametersr , u and g,
where the definitions ofr andu are the same as those of
the CHT andg represents the gray-scale value. The method
allows the extraction of the parameters of gray-scale lines
but it is expensive in terms of storage space since it needs
higher dimension HT space.

This paper proposes a gray-scale inverse Hough
transform algorithm, a new method that allows the correct
inversion of the HT space. As a first application the GIHT
can be used for straight line detection and filtering in gray-
scale images. The GIHT algorithm can reconstruct the
original image from the GHT space and determine lines
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pixel by pixel. The method is directly applicable to the
pixels of the gray-scale source images. It is based on the
Binary Inverse Hough Transform (BIHT), a recently
proposed algorithm [17,18], that allows the full reconstruc-
tion of the original binary image given only its size and the
data in the HT space. Thus, the BIHT overcomes the
inherent problem of the CHT based algorithms, which deter-
mine the polar parameters of the straight lines, but not the
exact positions of the pixels. The GIHT is a substantial
extension of the BIHT and can be applied to any gray-
scale image. It must be noticed that the proposed approach
does not provide only a new GHT algorithm but mainly its
inverse, the GIHT algorithm, which can be used for image
reconstruction, line detection and filtering. The line
detection and filtering process consists of two phases. The
detection phase, where information concerning the distri-
bution of the gray-scale sinusoidal curves in the HT space
is collected, and the decomposition phase, where the lines
that satisfy the filtering conditions are extracted. It should be
noticed that in GIHT lines are detected not just as con-
tinuous straight lines, but as they appear in the original,
i.e. pixel by pixel and with the correct gray-scale values.

The rest of this paper is organized as follows. Section 2
provides definitions of the HT and discusses the quanti-
zation problems of the discrete HT implementation. Section
3 analyzes the GHT and it is compared to CHT. Section 4
focuses on the description of the curve peaks in HT space. In
Section 5 the inversion conditions are stated and the proper
values of the scale coefficients are defined. Section 6 intro-
duces the GIHT algorithm and its implementation. Section 7
analyzes the peak cells detection algorithm, which gives the
cells of the HT space that will be used in the next section. In
Section 8 the gray-scale line filtering procedure is described.
Section 9 depicts some experimental and comparative
results of the application of the GIHT algorithm and
demonstrates its suitability for line detection and filtering.
Finally, Section 10 presents the conclusions.

2. The conventional Hough transform

The CHT can be considered as a point to curve transfor-
mation and it is used to detect the parameters of straight
lines in binary images. A straight line is described by its
polar representation as

r � xi cosu 1 yi sinu �1�
where�xi ; yi� are the coordinates of the pixels of the line.

In a binary image, all pixels�xi ; yi� correspond to a point
�u; r� in the HT space. Additionally, any point�xi ; yi� in the
image space is mapped into a sinusoidal curve in the HT
space. Thus, the HT can be considered as a point-to-curve
transformation. In the discrete case, the Hough space is
implemented through an accumulator arrayC. In the accu-
mulator arrayC, if 1=sfu is the step for the variableu , then

u [ �2908;2908 1 1=sfu;…; 1808�: Let also

uC � u·sfu �2�
and

~uC � Round�uC� �3�
where the Round function gives the nearest integer value.

Similarly, r [ �r1; r1 1 1=sfr;…; r2� and

rC � r·sfr �4�

~rC � Round�rC� �5�
where 1=sfr is the step for the variabler , andr1, r2 denote
the minimum and maximum values ofr , respectively.

Using the above definitions, it easy to show that in the
CHT each pixel of the image is mapped into a set of points
in the accumulator arrayC. These points belong to a
sinusoidal curve and increase the contents of the mapped
accumulator cells by one. Obviously, if the image includes a
straight line then the points of the straight line constitute a
local maximum inC. Using the coordinates�u; r� of this
local maximum we can detect the exact polar parameters
of the desired straight line, but unfortunately not the exact
position of its pixels, and this of course, is important for
many applications. This procedure becomes more complex
when the image contains many lines.

3. The gray-scale Hough transform

The gray-scale Hough transform is similar to the CHT but
differs in the voting procedure. As already mentioned, each
pixel �xi ; yi� of the image arrayA corresponds to a sinusoidal
curve in the accumulator arrayC. During the voting process
of the CHT, a curve is mapped into arrayC by increasing by
one the content of cellsC�u; r� that satisfy Eq. (1). It should
be noticed that for simplicityC�u; r� denotes the value of the
accumulator array corresponding to the�u; r� variables. In
the proposed GHT, the content of cells�u; r� of arrayC are
not increased by one, but by the gray-scale value of the
corresponding image pixel�xi ; yi�: That is, if �uk; rk� are
the cells that satisfy Eq. (1) andgi denotes the gray-scale
value of pixel�xi ; yi� that votes in cell�uk; rk� then

C�uk; rk�← C�uk; rk�1 gi �6�
Thus, when all non-zero pixels�xi ; yi� of arrayA have been
transformed to the GHT space, the value of each cell�u; r�
of arrayC will be equal to the sum of the gray-scale values
of all curves that vote on that cell during the GHT.

The GHT as described above, results into an accumulator
arrayC whose peaks do not necessarily define straight lines.
However, by using the GIHT technique described in a next
section, we can reconstruct the original image and deter-
mine any image line. This can be done using only the data
of the accumulator array and the size of the image. The line
detection is referred to not only the polar parameters of the
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lines, but also to the determination of the exact position of
every pixel.

4. Curve peaks in the HT space

For each point�xi ; yi� in the image domain, the peak
coordinates�uM ; rM� of the sinusoidal curve in the HT
space are given by

dr
du
� 0) uM � tan21 yi

xi

� �
�7�

and

rM � xi cosuM 1 yi sinuM : �8�
Generally, for any value ofsfu and sfr the coordinates of
each peak are given by

uCM � uMsfu and rCM � rMsfr �9�
At the peak of each curve in the HT space, there is a region
around uCM defined by^duC where the ~rC values are
constant due to the effect of the round function. Thus, if
rC belongs to the interval

~rCM 2 0:5 # rC , ~rCM 1 0:5 �10�
then

~rC � Round�rC� � ~rCM �11�
Also

rM 2 r � x cosuM 1 y sinuM 2 x cos�uM 1 du�
2 y sin�uM 1 du�

� rM�1 2 cosdu� ) r � rM cosdu �12�
In the general case, and for any value ofsfu it is assumed that

rC � rCM cos
duC

sfu

� �
�13�

Since duC is symmetrically distributed arounduCM, Eqs.
(10) and (13) give

duC � sfu cos21 ~rCM 2 0:5
rCM

� �
�14�

The range of the angle values where~rC � ~rCM is given by
the following equations:

d ~uCL � Trunc� ~uCM 2 �uCM 2 duC�� �15�

d ~uCR � Trunc��uCM 1 duC�2 ~uCM� �16�
where

~uCM � Round�uCM� �17�

~rCM � Round x cos
~uCM

sfu

 !
1 y sin

~uCM

sfu

 ! !
sfr

 !
�18�

and Trunc is the truncation function.
In Fig. 1 it can be observed the peak region of the curve of

pixel (20,19) forsfu � 1 andsfr � 5; uCM � 46:55; rCM �
130:86; ~uCM � 47 and ~rCM � 131: TheduC value is equal
to 4.24 while the angle width on the left side of~uCM is
d ~uCL � 4 and on the right sided ~uCR � 3:

5. Determination of the scale coefficients

It should be noticed that there are some schemes proposed
for the proper quantization of the standard HT, in order that
the peak values of the accumulator array to give the correct
parameters of the line segments [14,19–24]. Svalbe [19]
derived properties of a set of natural lines able to be formed
on a discrete grid and examined their relation with the para-
meters of the discrete HT. Kiryati and Bruckstein [20] deter-
mined the sampling intervals that satisfy the Nyquist
conditions. Soffer and Kyryati [21] introduced conditions
that ensure the convergence of the HT to the global maxi-
mum. Guo and Chutatape [23] examined the case of straight
lines with 1 pixel width and showed that the efficiency of the
HT is quite different for straight lines with different slopes.
Also, it is shown that the type of the short line segments of a
line influences the performance of the HT. However, even in
the case when a quantization scheme guarantees the deter-
mination of the “true” maximum on the HT space, it is not
possible to quantize the HT space optimally, such that all
peaks formed are neither spreaded nor extended [14]. Most
of researchers take the HT space equal in size to the image
space. However, the most known quantization schemes
proposed are the HiFi-quantization [22], Yuen’s quanti-
zation [24] and the most favorable of them the Diagonal
quantization [25]. These quantization schemes permit a
satisfactory calculation of the line parameters, but do not
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Fig. 1. Description of a peak region. The solid line indicates the real values
while the circles depict the discrete elements of the accumulator arrayC.



guarantee the inversion of the HT space and the determination
of the positions of the line pixels.

The inversion of the HT is possible only if the dimensions
of the accumulator arrayC satisfy some lower bounds.
These dimensions are defined by the scale coefficientssfu
and sfr . The determination procedure forsfu and sfr is
described in detail in Refs. [17,18]. In order to determine
the optimal values for the scale coefficients it is necessary
that all theN2 curve peaks of the image arrayA be sorted
according to their~rCM value as depicted in Fig. 2. Eqs. (17)
and (18) give the coordinates of those peaks. Specifically,
the peaks are divided intozones, each one determined by the
~rCM value of two consecutive pixels in the diagonal of array
A (marked with a circle in Fig. 2). The curves that belong to
each zone are sorted in a descending order according to their
~rCM value. Afterwards, the members of each zone are

separated intogroups where the members of each group
have the same~rCM value. Finally, the members of each
group are separated into twoclassesaccording to their
~uCM value. In the left class belong the elements of the
group that have~uCM , uD; whereas the right class contains
the elements that have~uCM $ uD; whereuD � 45sfu:

5.1. Inversion conditions

Let i, j denote two curves of a right class with~u �i�CM , ~u � j �CM :

If ~u �i�CM 1 d ~u �i�CR , ~u � j �CM 1 d ~u � j �CR; then there is no over-
lapping. This means that there is a set of points (at least
one) on the right side of row~rCM that resulted only by the
contribution of the right curvej. The furthest right of these
points is called thecharacteristic pointof the curve. This
point is important because it allows the detection of the
curves during the inversion process.

In general, starting from a small value ofsfr and
gradually increasing it, we can classify all curve peaks
into separate classes, so thateachleft or right class satisfies
the following conditions:

• For a left class

~u �s�CM 2 d ~u �s�CL , ~u �s11�
CM 2 d ~u �s11�

CL �19�
with s� 1;…; kL 2 1; wherekL is the number of class
members sorted from left to right according to the
distances

u ~u �i�CM 2 uDu; i � 1;…; kL �20�

• For a right class

~u �s21�
CM 1 d ~u �s21�

CR , ~u �s�CM 1 d ~u �s�CR �21�
with s� 2;…; kR; where kR is the number of class
members sorted from right to left according to the
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Fig. 2. The curve peaks in the upper three zones of the HT space of an 10×
10 image arrayA.

Fig. 3. The curves (6,13), (4,14) and (3,14) in the right class of group in row
~rCM � 29: The peak values of curve (4,14) overlap those of curve (3,14).

Fig. 4. The curves (6,13) and (3,14) do not overlap in the right class of
group in row ~rCM � 43:



distances

u ~u �i�CM 2 uDu; i � 1;…; kR �22�
whered ~u �i�CL ; d

~u �i�CR and ~u �i�CM are given by Eqs. (15)–(17),
respectively.

Additionally, the coefficientsfu is determined by a
repetitive procedure so that the peak values of any pair of
curves in a group differ, at least, in one point. That is, in
every group, for each elementi of the left class and each
elementj of the right class, one of the following inequalities
must be satisfied:

~u �i�CM 2 d ~u �i�CL , ~u � j �CM 2 d ~u � j �CL or

~u �i�CM 1 d ~u �i�CR , ~u � j �CM 1 d ~u � j �CR

�23�

The above conditions are called theinversion conditionsand
ensure that each curve of a class has at least one point in the
row ~rCM of C, which doesnot overlapby any other curve of
the specific class. This characteristic point allows the detec-
tion of the curve during the inversion process. Figs. 3 and 4
show the regions near the curve peaks for two different
values ofsfr . Their peaks satisfy the condition

uD � 45 , ~u �8;13�
CM � 65 , ~u �6;14�

CM � 74 , ~u �3;14�
CM � 78

In the case of Fig. 3,sfr � 2 and ~u �4;14�
CM � 74; d ~u �4;14�

CR � 11;
~u �3;14�

CM � 78 andd ~u �3;14�
CR � 5: Thus, the peak values of curve

(6,14) overlap with the peak values of curve (3,14). That is

~u �4;14�
CM 1 d ~u �4;14�

CR . ~u �3;14�
CM 1 d ~u �3;14�

CR

In case of Fig. 4, the peaks of the curves (8,13) and (3,14)
appear in the right class of group in row~rCM � 43 because

sfr � 3: It is ~u �6;13�
CM � 65; d ~u �6;13�

CR � 8; ~u �3;14�
CM � 78 and

d ~u �3;14�
CR � 8: Since

~u �6;13�
CM 1 d ~u �6;13�

CR , ~u �3;14�
CM 1 d ~u �3;14�

CR

the curves do not overlap, which means that the character-
istic point [86,43] of curve (3,14) is on the right side of the
characteristic point [73,43] of curve (8,13). It should be
noticed that due to the modification of thesfr value, the
curve (6,14), shown in Fig. 3, has~rCM � 44: Therefore, it
belongs to a higher group.

5.2. Direct calculation of the scale coefficients

It must be noticed that the scale coefficients do not
depend on the contents of the image but only on its
dimensions. Therefore, it is not necessary to apply the
above procedure for scale coefficients determination in
every image under study. Alternatively, the appropriate
values of the scale coefficients can be directly obtained
from a table such as Table 1, which gives the values ofsfu
and sfr for several image dimensions. However, from the
experimental results it can be observed that the relations

sfu�N� � ceil
N
50

� �
�24�

sfr�N� � ceil
N
2:8

� �
�25�

give a good approximation of the minimum scale
coefficients of the IHT algorithm. This is depicted in Figs.
5 and 6.

According to Eqs. (24) and (25), and for the entire image
space:

u [ 2
p

2
;p

� �
and �26�

r [ �0; ��
2
p

N� �27�
the size of the accumulator array is approximately equal to��

2
p

Nceil
N
2:8

� �
1 1

� �
·

3p
2

ceil
N
50

� �
1 1

� �
�28�

Considering the case of covering the entire image space,
Fig. 7 compares the size of the accumulator array of the IHT
algorithm to the size of the accumulator arrays of other well-
known quantization schemes [14]. It can be observed that
the size of the accumulator array in the IHT algorithm lies
between the size of the accumulator arrays of the Diagonal
and Yuen’s quantization schemes.
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Table 1
Minimum scale coefficientssfu and sfr for several values of image
dimensionN

Image dimensionN sfu sfr

10 1 4
25 1 9
50 1 17
100 2 34
150 3 53
200 4 68
250 5 89
300 6 102

Fig. 5.sfu as a function of image size.



Summarizing, the steps for determining the scale
coefficients are the following:

Step 1.Determine the peak� ~uCM ; ~rCM� of each curve in
the HT space according to Eqs. (17) and (18).
Step 2.Calculated ~uCL ; d ~uCR from Eqs. (15) and (16). Set
uD � 45sfu:
Step 3.Sort the curves in the HT space into zones, groups
and classes according to their~rCM values, and according
to their ~uCM value (see Fig. 2).
Step 4.Determine an appropriatesfr value for the given
image sizeN with the following procedure:

Step 4.1.Set sfr equal to a small integer value (e.g.
equal to 1).
Step 4.2.Check if the members of each left class satisfy
Eq. (19). If it happens, go to Step 4.3, else increasesfr
by one and repeat Step 4.2.
Step 4.3.Check if the members of each right class
satisfy Eq. (21). If so go to Step 5, else increasesfr
by one and repeat Step 4.3.

Step 5.Determine an appropriatesfu value for the given
image sizeN with the following procedure:

Step 5.1.Set sfu equal to a small integer value (e.g.
equal to 1).
Step 5.2. Check if in every group, one of the
inequalities (23) is satisfied. If so, go to Step 6, else
increasesfu by one and repeat Step 5.2.

Step 6.End the entire procedure.

6. The gray-scale inverse Hough transform

If the original gray-scale image has been transformed in
the GHT space that satisfies the inversion conditions then it
is possible to have a complete decomposition of the curves
in the GHT space. Through this procedure exact reconstruc-
tion of the original image is possible. The importance of this
algorithm is obvious because it permits the exact deter-
mination and filtering of the straight lines in gray-scale
images. By line determination we mean the exact
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Fig. 6.sfr as a function of image size.
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determination of the line pixels, their position in the image
and their gray-scale values. This is important because using
this algorithm we exploit the gray-scale information of the
lines and avoid the disadvantages associated with the
conversion of the gray-scale image to a binary one. As it
is mentioned above, no other GIHT algorithm has been
reported, but only the BIHT algorithm for binary images
proposed by Kesidis and Papamarkos [17,18]. The proposed
GIHT algorithm is based on the same philosophy of the
BIHT, but it is more complex than that and can be consid-
ered as a general inverse HT approach.

To analyze the GIHT algorithm it is supposed that all
pixels of the original gray-scale image that have non-zero
gray-scale values have been transformed to the GHT space.
The sinusoidal curves in the GHT space are separated into
zones, groups and classes as described above. The decom-
position process runs from the “upper” groups (higher~rCM

values) to the “lower” ones and from the “outer” member of
each class (greateru ~uCM 2 uDu value) to the “inner”. For
each curve corresponding to pixel�xi ; yi� of the original
imageA, let g denote the value of its characteristic point
which is the furthest left peak cell� ~u �xi ;yi �

CM 2 d ~u �xi ;yi �
CL ; ~r �xi ;yi �

CM �
or the furthest right peak cell� ~u �xi ;yi �

CM 1 d ~u �xi ;yi �
CR ; ~r �xi ;yi �

CM � for
the left and right classes, respectively. As it is shown in Fig.
8, if g is a non-zero value then the corresponding pixel
�xi ; yi� exists and has gray-scale value equal tog. In that
case the curve obtained from pixel�xi ; yi� is removed from
the HT space, i.e. all the points of HT space corresponding
to this curve decrease their value byg. Also, the arrayAinv is
updated, i.e. the gray-scale value of its�xi ; yi� pixel is set to
g. The procedure continues by checking all the members of
all groups according to the decomposition process described
previously. At the end of this process, the GHT accumulator
array is empty and the restored gray-scale imageAinv is the
same as the originalA.

7. The detection of the peak cells

In this section we describe the type of the filtering con-
ditions and how these conditions can be applied to the
original gray-scale image via the GIHT procedure. Let us
consider a gray-scale imageA of N × N size, where we want
to apply a filtering procedure in order to find all the image
lines that satisfy some specific conditions. LetAinv denote an
image with the same dimensions asA containing the results
of the filtering procedure.

The filtering conditions can be referred to:

• The gray-scale value of the pixels of the lines.
• Ther andu polar parameters.
• The length of the lines (total number of pixels of the

lines).

Let D be the gray-scale depth of the original imageA
(usually D � 256), andg(w) the gray-scale filter values of
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Fig. 8. Check for curve (10,10). This curve is the only member of the group
at row ~rCM � 57 and belongs to the right class. The characteristic point
valueC[47,57] is non-zero, so the curve is removed and the element (10,10)
of arrayAinv is set to gray-scale valueg� C�47;57�:

Fig. 9. A peak cell in the accumulator array. Eight curves vote in that cell.



interest, with 1# g�w� # D 2 1 and 1# w # L; whereL is
the total number of the filter conditions. Let also,T(w) denote
the threshold value that corresponds to each condition, with
T�w� $ 0: Finally, let (umin,umax) and (rmin,rmax) denote the
polar parameter conditions. In the resulting imageAinv must
be shown only the pixels with gray-scale valuesg(w) that
belong to lines that have lengthT(w) andu andr determined
by the limits (umin,umax) and (rmin,rmax).

As already mentioned, in the case of GHT, the value of
each cell in the HT space is equal to the sum of the gray-
scale values of all the curves that vote in that cell. That is, if
vc � C�u; r� denotes the value of a cell in the GHT space
then

vc �
Xgc

k�1

gs
�k�g

v
�k� �29�

wheregc is the number of the different (individual) gray-
scale values that voted in that cell,gs

�k� denotes the sum of
votes for eachgc, andgv

�k� denotes the gray-scale value of
eachgc. For example, the cell depicted in Fig. 9 hasgc � 3;
gs
�k� � {2 ;3;3} ; gv

�k� � {100;150;240} andvc � 1370:
The case of an image that has all the non-zero pixels equal

to 1 is a special case of the GHT and can be considered as
identical to the CHT space. In this case, the votes of the
sinusoidal curves increase the content of the cells of arrayC
by one. Thus, when all the pixels are transformed via the
GHT, each cell in the accumulator arrayC has value equal
to the number of curves that pass through that cell. In Eq.
(29), gc � 1 andgV � 1; and thus

vc � gSgV ) gS� vc=g
V ) gS� vc �30�

Let us suppose anN × N image matrixA1 where all pixels
are equal to one. This image is transformed using the GHT
in such a way that the accumulator arrayC1 satisfies the
inversion conditions. Then, we search the cells of array
C1�i; j� that satisfy the following conditions:

umin # i # umax; rmin # j # rmax �31�

and

C1�i; j� $ Tmin; whereTmin � minimum{T�w�} �32�
These cells are stored into an arrayS, which is called the
peak cells array.

If an imageA2 has all pixels with gray-scale value equal
to 2, then the inequality in Eq. (32) is modified as

C1�i; j� $ 2Tmin; whereTmin � minimum{T�w�} �33�
Thus, the peak cells array contains the same cells as in the
previous case of imageA1.

This statement can be generalized for anyN × N input
imageA having all pixel values equal tog, where 1# g #
D: The cellsCg�i; j� of the corresponding accumulator array
that satisfy the size and polar parameter conditions

umin # i # umax; rmin # j # rmax �34�
and

C1�i; j� $ gTmin; whereTmin � minimum {T�w�} �35�
are the same for any value ofg. The peak cells arrayS is an
indicator to the cells of arrayC that must be taken under
consideration during the decomposition phase described in
the next.

8. The gray-scale line filtering procedure

The filtering inversion procedure consists of two phases.
The detection phase which collects information about the
distribution of the gray-scale values in the peak cells and the
decomposition phase where the resulting imageAinv is
extracted through the decomposition of the curves of the
accumulatorC.

Let A be a gray-scale image array ofN × N size. Using
the GHT, all the non-zero pixels of arrayA are transformed
to the accumulator arrayC1, which has scale coefficientssfu
andsfr that satisfy the inversion conditions;C2 an auxiliary
copy of arrayC1 that will be used in the decomposition
phase;B an image array ofN × N size having pixel values
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Fig. 10. Two peak cells in GHT space. After the removal of the eight curves, the gray-scale distribution in eachS�k� is the valueF�k;w� where 1# k # 2;
1 # w # 3 andg�w� � {100;170;200}:



equal to one;CB the corresponding accumulator array
produced by the GHT ofB; g(w) the gray-scale filter values
of interest, with 1# g�w� # D 2 1 and 1# w # L; whereL
denotes the total number of the filter conditions;T(w) the
threshold value that corresponds to each condition, with
T�w� $ 0; (umin,umax) and (rmin,rmax) the polar parameter
conditions.

The peak cells arrayS is obtained from the accumulator
array CB after the application of the filtering procedure

described by Eq. (35) forg� 1: Let also thatM denote
the total number of the peak cells stored in arrayS.

8.1. The detection phase

Step 1.Apply the decomposition process to accumulator
arrayC1 according to the GIHT. For every removed curve
go to Step 2.
Step 2.If the gray-scale valuev of the removed curve
(which is equal to the value of the characteristic point)
belongs to the gray-scale filter values, that is, ifv [
�g�1�;g�2�;…;g�L�� then go to Step 3. Otherwise, continue
in Step 1 with the next curve.
Step 3.Check if the removed curve passes through any of
the peak cells stored in arrayS. If it does, then increase
the value of arrayF�k;w�; wherek is the index of the peak
cell andw is the index of the filter gray-scale value that
satisfies the equationg�w� � v: If the entire curve is
removed from arrayC1 and allM peak cells are checked
then continue in Step 1 with the next curve.

At the end of the detection phase, arrayF contains the
distribution of the gray-scale values among the peak cells
S(k). That is, the valueF�k;w� denotes the sum of curves that
pass through the peak cellk and have gray-scaleg(w) where
1 # k # M and 1# w # L:

Fig. 10 demonstrates an example of the GHT space
during the detection phase. It isM � 2; L � 3 andg�w� �
{100;170;200}: Suppose the decomposition starts with
curved1. We check if it passes through any point of array
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Fig. 11. The pixels in the resulting imageAinv after the decomposition
phase.

(a) (b)

(c) (d)

Fig. 12. (a) The original image, and (b)–(d) the extracted lines of experi-
ment 1.

Table 2
Filtering conditions for experiment 1

Case Filtering
conditions

Resulting
image

Computational
time (s)

1 T � 4; 13 # g # 31; 77 # g # 121;
25 # u # 35 and 70# r # 90

Fig. 12(b) 52

2 T � 8; 55 # g # 232; 89 # u # 91
and 32# r # 40

Fig. 12(c) 55

3 T � 8; 60 # g # 138; 89 # u # 91
and 33# r # 40

Fig. 12(d) 49

(a) (b)

Fig. 13. (a) A binary form of image 12(a). (b) The extracted lines using the
BIHT algorithm.



S. Since it passes throughS(1) andS(2) arrayF is updated:

F�1; 1�← F�1;1�1 1 for peak cellS�1� �36�

F�2; 1�← F�2;1�1 1 for peak cellS�2� �37�
While removing the other curves, the corresponding values
of arrayF are updated. When all eight curvesd1 to d8 are
removed, arrayF contains the following values:

F�1; 1� � 2 F�2;1� � 1 �38�

F�1; 1� � 3 F�2;2� � 0 �39�

F�1; 1� � 0 F�2;3� � 2 �40�
It should be noticed that the cross-points of curves (d1,d6),
(d1,d7) and (d1,d8) are not considered since they do not
belong to the peak cells arrayS. Also, the curved6 is ignored
in peak cellS(2) since its gray-scale value does not belong to
the gray-scale filter values. That is 220Ó �g�1�;g�2�;g�3��:

8.2. The decomposition phase

Since arrayF contains the distribution of the gray-scale

values among the peak cellsS(k), we can apply the decom-
position phase to extract the resulting gray-scale imageAinv.

Step 1.Apply the decomposition process to the accumu-
lator arrayC2 according to the GIHT algorithm. For every
removed curve go to Step 2.
Step 2.If the gray-scale valuev of the removed curve is
one of the gray-scale filter values, that isv [
�g�1�;g�2�;…;g�L�� then go to Step 3 else continue in
Step 1 with the next curve.
Step 3.Check if the removed curve passes through any of
the peak cells stored in arrayS(k). If it happens then go to
Step 4. Otherwise, continue in Step 1 with the next curve.
Step 4.Compare the valueF[k,w] with T(w), wherek is the
peak cell index,w is the index of the gray-scale filter
values that satisfies the equationg�w� � v; andT(w) is the
wth filter threshold value. IfF�k;w� $ T�w� it means that
from the peak cellS(k) pass at leastT(w) curves having
gray-scale valueg(w). If so, go to Step 5 else go to Step 1.
Step 5.Activate the pixel�xi ; yi� of arrayAinv that corre-
sponds to the removed curve and set the gray-scale of
pixel �xi ; yi� to v. Go to Step 1 and continue with the
next curve.

At the end of the decomposition phase the imageAinv

contains the result of the whole filtering procedure. The
pixels of arrayAinv belong to lines which have length at
leastT(w), satisfy the polar parameter conditions (umin,umax)
and (rmin,rmax) and have gray-scale valuesg(w).

Let us consider the example of Fig. 10 where we have the
following threshold values:

T�1� � 5; T�2� � 2 and T�3� � 2

This means we search for lines that have

• gray-scale valueg�1� � 100 and lengthT�1� � 5 or
• gray-scale valueg�2� � 170 and lengthT�2� � 2 or
• gray-scale valueg�3� � 200 and lengthT�3� � 2:

The values of arrayF found during the detection phase are
those of Eqs. (38)–(40). Fig. 11 depicts the pixels of the
resulting imageAinv after the termination of the decom-
position phase. Specifically, the final imageAinv contains:

• The pixels that correspond to curvesd2, d3 andd4 which
have gray-scale valueg�1� � 170 and pass through the
peak cell S(1). They satisfy the threshold conditions
since F�1;2� � 3 which is greater than the threshold
valueT�2� � 2:

• The pixels that correspond to curvesd7 andd8 which have
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(a) (b)

(c) (d)

Fig. 14. (a) The original gray-scale image, (b) image after gray-scale reduc-
tion, and (c),(d) the extracted lines.

Table 3
Filtering conditions for experiment 2

Case Filtering conditions Resulting image Computational time (s)

1 T1 � 4; 110# u1 # 130 and 40# r1 # 70; g1 $ 200 Fig. 14(c) 82
T2 � 4; 62 # u2 # 68 and 83# r2 # 88; g2 $ 200

2 T � 4; 22 # u # 28 and 50# r # 68; g $ 200 Fig. 14(d) 59



gray-scale valueg�1� � 200 and pass through the peak
cell S(2).They satisfy the threshold conditions since
F�2;3� � 2 which is equal to the threshold valueT�3� �
2:

The pixels corresponding to curvesd1 andd5 are not shown
in Ainv since the threshold value isT�1� � 5 and thusAinv

contains only lines with a total number of pixels greater or
equal to five. As already mentioned before, the curved6 has
gray-scale value out of interest�d6 � 220Ó �g�1�; g�2�; g�3���
and is ignored in the detection phase and, therefore, does not
appear in the final imageAinv.

9. Experimental results

The GIHT algorithm has been tested with a variety of
images. The experimental results are given in order to

confirm the correct results of the inversion procedure and
the applicability of the GIHT algorithm. It should be noticed
that the GIHT algorithm has been implemented in C11 and
the computational times given are referred to a Pentium
300 MHz computer.

9.1. Experiment 1

This first example demonstrates the application of the
GIHT algorithm to the extraction of gray-scale straight
lines in a noisy image. The original image of Fig. 12(a)
has two thick gray-scale line segments and it has been
corrupted by noise. The size of the image is 100×
100 pixels and the scaling coefficients aresfu � 2 andsfr �
34: The GIHT algorithm is applied using the filtering con-
ditions shown in Table 2. In the first case, the extracted line
segments are not continuous due to the quantization effects.
The only difference in the last two cases is the range forr . It
can be observed that in the second case some noise pixels
remain and this happens because these pixels are collinear
and satisfy the inversion conditions.

For comparison reasons, the BIHT algorithm is applied to
the binary form of the original image shown in Fig. 13(a).
The filtering conditions for the BIHT are the same with case
1 of Table 2 and the line extraction results obtained are
shown in Fig. 13(b). It can be observed that in this case,
the extracted lines include undesired parts and many noise
pixels appear.

9.2. Experiment 2

In this example, the proposed method is applied to the
100× 100 pixels image of Fig. 14(b) which has only eight
gray-scale values. This image is the result of the application
of the gray-scale reduction technique proposed by
Papamarkos et al. [26,27] to the image of Fig. 14(a). As a
result, the line segments in the image of Fig. 14(b) have
more collinear pixels of the same gray-scale value. First,
the GIHT is performed simultaneously with the two filtering
conditions given in case 1 of Table 3. The results obtained
are depicted in Fig. 14(c) where we can see the extraction of
two roads. Next, as it is shown in Fig. 14(d), using the
filtering conditions of case 2 in Table 3, the GIHT algorithm
detects straight lines belonging to the air corridor.

9.3. Experiment 3

As a final example, the GIHT algorithm is applied to the
natural image of Fig. 15(a). The size of the image is 100×
100 pixels and again the scaling coefficients aresfu � 2 and
sfr � 34: In the GHT space, the three filtering conditions
shown in Table 4 are used. The line detection results are
depicted in Figs. 15(b)–(d). It can be observed in Fig. 15(d)
that despite the identical conditions forr andu , the filtering
procedure, via the GIHT, extracts two sets of lines. These
sets define two areas of different size and gray-scale values
due to the use of different conditions forg andT. The lower
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(a)  (b)

(c) (d)

Fig. 15. The original gray-scale image and the extracted images of experi-
ment 3.

Table 4
Filtering conditions for experiment 3

Case Filtering conditions Resulting
image

Computational
time

1 T1 � 10; 122# g1 # 131; Fig. 15(b) 79
T2 � 20; 236# g2 # 250;
20 # u # 50 and 50# r # 80

2 T1 � 10; 67 # g1 # 71; Fig. 15(c) 28
T2 � 30; 235# g2 # 250;
u � 0 and 50# r # 100

3 T1 � 10; 122# g1 # 131; Fig. 15(d) 55
T2 � 20; 231# g2 # 250;
u � 45 and 85# r # 92



area is thinner than the other since the used threshold valueT
is higher. It should be noticed that the optical difference that
may be observed between the gray-scale values of the origi-
nal and the reconstructed image is only an optical illusion.

10. Conclusion

In this work, we introduced the GIHT, an algorithm that
allows the reconstruction of a gray-scale original image
from a new GHT space. The proposed GIHT algorithm is
suitable for detection and filtering of straight lines. The line
filtering procedure allows the detection of gray-scale lines
according to conditions associated with the polar para-
meters, the gray-scale value and the size of the lines. The
method does not split the original gray-scale into bilevel
images neither does it use the halftoning version of the
original. The method uses the gray-scale distribution infor-
mation stored in HT space. Due to the inversion algorithm,
the filtered lines are detected exactly as they are in the
original image. The GIHT was extensively tested with
many gray-scale images and the experimental results
confirm its efficiency.
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