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This paper presents a Turbo-Basic program that
implements an algorithm for the optimum approx-
imation of real rational functions via linear-
programming. The formulation of the linear prob-
lem is based on the minimization of a minimax
criterion, while its solution is derived through the
dual problem. This algorithm is much faster and
requires less storage than other approximation
techniques. The program is implemented on an
IBM-PC AT and tested by several examples.
Analytical examples are presented to illustrate how
the program is used and the effectiveness of the
algorithm.
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INTRODUCTION

The program presented in this paper is designed to solve
the problem of the fast and optimum approximation of
real rational functions via linear-programming. This
problem is formulated as follows. If wx is the value of
the independent variable at the sampling point &, which
belongs to the sampling region S, then the approxima-
ting rational function may be written as
N

Alwor) Z}l aiAi(wx)

H = =
(wk) B(we) 1+ f biBi(we)
1=1

)

where N, M are integers variables, a;, b; the unknown
coefficients to be determined, Ai(wx) and B,(wk)
polynomials of wx and B(wx) >0 Vwi€S. Now, if
G(wx) is the ideal function to be approximated in S, we
seek to determine the values of a,, i=1,2, ..., Nand b,,
i=1,2,..., M, using LP techniques, so that some objec-
tive criterion is satisfied. The above problem is suitable
in many engineering applications, such as the circuits
synthesis and digital signal processing'.

Over the past years, several formulations addressing
this problem have been proposed®**°>. The optimiza-
tion algorithm employed in this article is based on the
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method proposed by N. Papamarkos ef a/. According
to this method, the formulation of the linear problem is
based on a minimax criterion, while its solution is deriv-
ed through the revised Simplex algorithm’ using the
dual problem. This method is much faster and requires
less storage than other approximation techniques and
particularly the differential correction algorithm (DCA)°.
These advantages make it ideally suitable for situations
where the dimensionality of the approximation problem
is large.

DESCRIPTION OF THE ALGORITHM

The algorithm is based on the definition of a minimax
criterion in the region S. For this reason, at every sam-
pling point wk € S the following criterion is defined

Ex = G(wk) — H(wk) )]

where G(w«) represents the ideal response of H(wk),
and Ey are desired quantities with small absolute values.
Moreover, at each sampling point wx € S, the variables
¢« are defined through the relation

¢k = (G(wk) — Ex)B(wk) — A(wk) (3)
which may also be written as
Alwk) £k
G —Ey="—""r 4 —"—
(wi) — Ex Blox) +B(wk) @

From the above equation it is seen that for a better ap-
proximation, the quantities

L&l
% = Bwo) ©)

must be minimized and, therefore, each 6/ must not
exceed a small upper bound. If therefore,

¢’ = maximum | & | (6)
M

then the quantities

B
5y = Blw) W)
¢
must achieve a large positive value. Therefore, if
& = minimum { ¢ } ®
S

and the relations defined above are taken into account,
the approximation problems may be formulated as
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follows:

maximize o
subject to
(G(wik) — Ex)B(wik) — Awr)| < &
B(wk) 2 0’ 9
Ywr €S

where k=1,2,...,K and £, 6 > 0. It is noted that the
second set of constraints in (9) guarantees the
positiveness of the denominator polynomial.

It is easily deduced from (9) that

[(G(wk) — Ex) ~ H(wk)| €8 Yk €8, (10)

and therefore the approximation error at each sampling
point is bounded in absolute value to be less than or
equal to 4. It is also obvious that the solution of the prob-
lem (9), resulting in a minimum value for 8, guarantees
that the relation

6 = maximum | (G(wx) — Ex) — H(wi)| (11)
wi €8
is satisfied.
The approximation problem (9) is not linear, but it
may be converted to a linear one via the transformations

£=1/¢ .
a,’:a,/é’ fori=1,2,....,.N
b/ = bt fori=1,2,.... M (12)

Now, the approximation problem takes the following
linear form:

maximize 6

subject to

M
(G(wi) — Ex)E+ (Glwk) — Ex) 2, bi Bi(wk)
=1
N
- Z} al Awr) €1, —(G(wk) — Ex)é
M
—(G(w) — Ex) 25 bl Bi(wi) (13)
i=1

N M
+ 2 al Adwk) S 1, —E— 2 B/Bi(wk)+6<0
=1 =1

VYwr €S and £,6 > 0.

It is noted that the variables a, and b, are unrestrained
in sign. In order to take this into account, we must con-
vert the formulation of the linear problem (13) by using
a shift-variable V. Therefore, if

p={ai+ V)¢ fori=1,2,....N

g =(bi+ V)t fori=1,2,... M (14)
it is easily seen that

a =p — V¢ fori=1,2,...,. N

bl =q,— V& fori=1,2,.... M 15)

Substituting a;, b, from (15), the linear problem (13) is
reformulated as

maximize 6
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subject to

A N
D(w)§+ (Glwk) — Ex) 20 @Bi(wk)— 2, prAwi) < 1.
=1

1=1

Al
— D(w)E — (G(wk) — Ex) Zl q:B.(wk)

N A
+ 2 pAdwk) 1, —Clwk)e— 2, qBilwk) +6 <0
=1 (=1

Vek €S (16)
£6>0

where

M
D(wk) = (G(wk) — Ex) = (G(wi) — Ex)V 2 Bilwk)
=1
N
+V 2 Alwx) (17)
1=1

M
Clok)=—1+V D) Bi(w) (18)
=1

The linear problem (16) contains N+ M + 2 variables
and 3K constraints. It 1is wusually true that
3K> N+ M+ 2, necessitating a solution of the dual
problem instead of the primal. This solution approach
effectively reduces memory requirements imposed by
the revised Simplex algorithm for matrix-element
storage and matrix inversion.
The dual problem has the form

minimize u; + Uz + Ug + Us + U7 + Ug + Uy + -+

subject to
D{(we)(ur — u2) — Clwx)us + --- 20,
(G(wk) — Ex)Bi(wi ) (uy — uz) — By(wi)us + - 20,
(G(wk) — Ek)Bz(wk)(ul —uy) — Bz(wk)u3 + o .2 0,
(G(wk) _Ek)BM(wk)(u1 - le) — BM(wk)u3 4 e 2 O’
— A (wi) Uy — ) + Ouz + - >0,
—Ax(wk)(uy — uz) + Ouz + - 20,
— An(or) (U1 — t2) + Oz + -+ 2 0,
O —u2)+ us+--- 21,

(19)

where u; 20 fori=1,2,...,3K

DESCRIPTION OF PROGRAM

The implementation of the above method is coded in
Turbo-Basic for IBM-PC and its compatible machines.
The use of Turbo-Basic have been done because it is a
familiar compiled language and clearly more faster than
GWBASIC. The program consists of a main program,
five subroutines and five functions. All the input data
are entered in the main program and in the self promp-
ting mode. The input data required by the program are:

(i) The lower bound of the sampling points
(ii) The upper bound of the sampling points
(iii) The number of sampling points
(iv) The number of numerator coefficients



(v) The number of denominator coefficients
(vi) The value of E
(vii) The shift-value.

Upon entering all the necessary data, the program
permits to check and change the input data or to solve
the model.

The definition of the ideal response is made in
FNGW(w) function, while the form of the rational
function to be approximated, is given by the
FNAB(/,i, k). The correspondence between A;(wk),
B.(wr) and the function FNAB(/, /, k) is clarified by the
following relations

A, (wx) = FNAB(1, i, k) (20)
and
Bi(wx) =FNABQ, i, k) 21

After the functions FNGW(w) and FNAB(/, i, k)
having been built the program is ready to run. The
subroutine OPTIM(T$,NLOOP), is the basic sub-
routine that implements the revise Simplex algorithm
and is appropriately developed for the solution of the
concrete linear problem.

When the optimal solution has been found the pro-
gram displays a new menu that allows the user to choose
one of the following options:

(i) Display a list of the input data

(ii) Display the final results only
(iii) Print the input data and the final results
(iv) Terminate the program

As final results the program gives the optimum values of
£ and 4, the optimum values of the coefficients g, and b,,
the maximum number of loops needed and the final
computation time.

It is noted that additional information about the pro-
gram is given on the program list.

EXAMPLES

The program was tested by applying it to several ap-
proximation problems. Owing to space limitation, here
are presented only two examples for the test performed.
The computation time is reported for an IBM-PC AT
with 8087 coprocessor.

Example 1
In the first example the program is applied to the
problem of approximating the function
G(w)=4+10e™ + 2795
by the rational function

a+ axw + a3w2 + a4w3
1+ 51w+ baow? + bw® + baw? + bsw®

The sampling interval is [0,10] and 51 sampling points
were used. The example is solved for V=10, and
Ex=0.01V kesS.

The best solution of the linear approximation prob-
lem was found after 15 sec. The print-out of the pro-
gram at the optimal solution is as follows:

H(w)=

List of Input Data

Lower bound for w=0
Upper bound for w=10
Number of sampling points = 51
Number of numerator coefficients = 4
Number of denominator coefficients = 5
E = 1E-002
Shift-value = 20

FINAL RESULTS:

£= 0.0003134182 6= 0.0003134182

a(l)= 15.9903134182 b(1)= 0.5288624716
a(2)= —2.5516460141 b(2)= 0.1160023420
a(3)= 1.3227404478 b(3)= 0.0150266336
a(4) = —0.290041662 b(4) = —-0.0012339684
b(5)= 0.0000283720
Loops = 37 Computation
time:00:00:15

Figure 1 shows the response of the approximated
rational function, while figure 2 depicts the error
[G(wk) — Ex — H(wy)] at the sampling region S.

Example 2

In this example, as an engineering application, the
design of a zero phase 1-D low-pass digital filter is con-
sidered. For this filter the ideal magnitude frequency
response is given by the relation:
Gla O < Wk S Rps
G -G R,G; — RG,

wk + T ——

Ry, — R R, - R,
G RiSw <

G(wx) =

!RpswkgRiy
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Figure 1. Approximation of G(w) =4 + 10e™¢ + 2e~05¢
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Figure 2. Approximation error for Example 1

while the filter’s transfer function has the following
form

N
> 2a, cos[ (i — Dwg]
H(wk) - 1=1 7
1+ >, 2b; cos(iwk)
t=1
where a, and b; are the coefficients of the filter.

The example was solved for N=5, M=9, G;=1.0,
G,=0.04, Ry=0.47w, Ry=0.55%, Ex=0, v k€S and
with a total of 100 sampling points. The problem was
solved after 105 sec. It is important to note that if the
same problem is approached using the DCA method, a
linear problem with a total number of 300 constraints
must be solved iteratively. The final print-out of the
program is as follows:

List of Input Data

Lower bound for w=10
Upper bound for w=13.1415926
Number of sampling points = 100
Number of numerator coefficients = 5
Number of denominator coefficients = 9
E=0
Shift-value = 20

FINAL RESULTS:

£= 0.0015840255 8= 0.026731697
a(l)= 0.0418689230 b(1) = —0.7975792522
a(2) = —0.0025045458 b(2)= 0.5326162201
a(3)= 0.0230362655 b(3) = ~-0.2419209198

a(4) = —0.0231028469 b(4)= 0.0231839884
a(5) = —0.0088903285 b(S)= 0.0379077892
b(6) = —0.0348936167
b(7)= 0.0101274836
b(8)= 0.0042791487
b(9) = 0.0041053814

Loops =92 Computation

time:00:01:45
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Figure 3. Filter magnitude response for Example 2
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Figure 4. Magnitude approximation error for Example 2

The magnitude frequency response of the designed
filter is shown in figure 3 while figure 4 depicts the error
[G(we) — H(wi)] .

CONCLUSIONS

The examples illustrated have shown that the proposed
program is suitable for approximation of real rational
functions and has the following advantages:

—Is always applicable and can be used to approx-
imate large dimensionality rational functions.

— Is much faster and requires less storage than other
approximation techniques

— The objective function of the linear problem, truly
represents a good approximation error. It implies
that minimization of this function always
guarantee an optimum rational approximation.
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APPENDIX A
Listing of program RATAP1.BAS

CLS
PRINT"ZDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD? ”
PRINT"3 Approximation of real rational functions via Linear Programming 3"

PRINT"3 by Nikos Papamarkos 3
PRINT"3 3
PRINT"3 3
PRINT"3 H(x)=A(x)/B(x) 3"
PRINT"3 3
PRINT"3 A(x)=a(l)Al(x)+a(2)A2(x)+a(3)A3(x)+...+a(N)AN(x) 3"
PRINT"3 3"
PRINT"3 B(x)=1.4b(1)B1l(x)+b(2)B2(x)+b(3)B3(x)+...+b(M)BM(x) 3"
PRINT"3 3"
PRINT"3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 3
PRINT"3 min 3"

PRINT"3 3"
PRINT"3 subject to: 3"
PRINT"3 3"
PRINT"3 3G(xk)*B(xk)-A(xk)3 s % 3"
PRINT"3 3
PRINT"3 %/B(xk) s 3"

PRINT"3 for k=1,2,...,K 3"

PRINT"@DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDY "
DEFDBL A-H,0-Z

DEFINT I-N

WHILE NOT INSTAT

LOCATE 22,2:print"Press any key to CONTINUE"

WEND

AD$="X"

WHILE ADS$<>" *

CLS

LOCATE 3,3:PRINT " Input the following information for the approximation problem"
LOCATE 4,3:PRINT"DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD "
LOCATE 6,5:PRINT " Lower bound for w ="

LOCATE 8,5:PRINT " Upper bound for w ="

LOCATE 10,5:PRINT " Number of sampling points ="

LOCATE 12,5:PRINT " Number of numerator coefficients ="

LOCATE 14, 5:PRINT "Number of denominator coefficients ="

LOCATE 16,5:PRINT " E ="

LOCATE 18,5:PRINT " Shift-value ="

LOCATE 6,42:INPUT ,W1

LOCATE 8,42:INPUT ,W2

LOCATE 10,42:INPUT ,K

LOCATE 12,42:INPUT ,N

LOCATE 14,42:INPUT M

LOCATE 16,42:INPUT ,E

LOCATE 18,42:INPUT ,SHIFTVALUE

LOCATE 22,2:PRINT" Press [Esc] to changes the input data or any other key to continue"
WHILE NOT INSTAT
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WEND
KK$=INKEY$
IF KK$<>CHR$(27) THEN
EXIT LOOP
END IF
WEND
CLS
LOCATE 10,15:PRINT "PLEASE WAIT"
BIGM=1.E+6
L=3*K
NL=N+M+1
NLNG=N+M+2
NLNG1=NLNG+1
LMAX=L+NLNG1
DIM W(K),PO(NLNG),CYN(LMAX),X(NLNG),G(K),BASIS(NLNG1,NLNG1)
V=(W2-W1) /CSNG(K-1)
W(l)=W1
G(1)=FNGW(W1)-E
FOR I=2 TO K
W(I)=W(I-1)+V
Y=W(1)
G(I)=FNGW(Y)-E
NEXT I
FOR I=1 TO LMAX
I1=I
CYN(I)=FNCI(Il)
NEXT I
FOR I=1 TO NLNG-1
PO(I)=0.
NEXT I
PO(NLNG)=1.
CALL OPTIM(TS$,NLOOP)
WHILE ADS$<>" "
CLS
KK=0
LOCATE 10,15:PRINT " OPTIMAL SOLUTION"
LOCATE 12,15:PRINT "1 : Display the Input Data"
LOCATE 14,15:PRINT "2 : Display the Final Optimal Results"
LOCATE 16,15:PRINT "3 : Print the Input Data and the Final Optimal Results"
LOCATE 18,15:PRINT "4 : Terminate the Program"
WHILE KK<1 OR KK>4
KK$=INKEY$ : KK=VAL (KKS$)
WEND
IF KK=1 THEN
CLS
CALL INDATA(W1,W2,K,N,M,E,SHIFTVALUE)
WHILE NOT INSTAT
LOCATE 22,2:print"Press any key to return to OPTIMAL SOLUTION menu"
WEND
ELSEIF KK=2 THEN
CLS
CALL XVAL(BASIS(),X(),T$,NLOOP)
WHILE NOT INSTAT
LOCATE 22,2:print"Press any key to return to OPTIMAL SOLUTION menu"
WEND
ELSEIF KK=3 THEN
CLS
CALL PINDATA(W1,¥2,K,N,M,E,SHIFTVALUE)
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CALL PXVAL(BASIS(),X(),T$,NLOOP)
WHILE NOT INSTAT
LOCATE 22,2:print"Press any key to return to OPTIMAL SOLUTION menu"

WEND
END IF
IF KK=4 THEN EXIT LOOP
WEND
END

REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

SUB INDATA(W1,Ww2,K,N,M,E,SHIFTVALUE)

LOCATE 2,5:PRINT " List of Input Data"

LOCATE 3,5:PRINT " DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD”
LOCATE 6,5:PRINT Lower bound for w =";Wl

LOCATE 8,5:PRINT Upper bound for w =";W2

LOCATE 10, 5:PRINT Number of sampling points =";K

LOCATE 12,5:PRINT Number of numerator coefficients =";N

LOCATE 14,5:PRINT "Number of denominator coefficients =";

[
"
L
[]

LOCATE 16, 5:PRINT " E =";E
LOCATE 18,5:PRINT " Shift-value =";SHIFTVALUE
END SUB

REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
SUB PINDATA(W1l,W2,K,N,M,E,SHIFTVALUE)

LPRINT TAB(5) :LPRINT " List of Input Data"

LPRINT TAB(S):LPRINT " DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
LPRINT TAB(S5):LPRINT " Lower bound for w =";W1

LPRINT TAB(S):LPRINT " Upper bound for w =";W2

LPRINT TAB(5):LPRINT " Number of sampling points =";K

LPRINT TAB(S):LPRINT " Number of numerator coefficients =";N
LPRINT TAB(S5):LPRINT "Number of denominator coefficients =";M

LPRINT TAB(S5):LPRINT " E =";E
LPRINT TAB(S5):LPRINT * Shift-value =";SHIFTVALUE
END SUB

REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DEF FNCI(LL)
* Determines the coefficients of the first constraint in the dual form
SHARED W(),N,L,NLNG,NLNG1,LMAX,M,G(),BIGM,SHIFTVALUE
LocaL 11,I,KK,P,Q,K1,K2,GG2,C
FNCI=0
IF LL>L THEN
IF LL=L+NLNG THEN FNCI=BIGM
EXIT DEF
END IF
K2=LL MOD 3
Ki=(LL-K2)/3
IF K2<>0 THEN
K1=K1+1
ELSE
K2=3
END IF
GG2=G (K1)
P=0.
IF K2<>3 THEN
FOR I1=1 TO N
I=I1
KK=K1
P=P+FNAB(1,I,KK)
NEXT 11
END IF
Q=0.
FOR Il1=1 TO M
KK=K1
I=I1
Q=Q+FNAB(2,1,KK)
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NEXT I1
C=SHIFTVALUE* (GG2*Q-P)
IF K2=1 THEN
FNCI=GG2-C
ELSEIF K2=2 THEN
FNCI=C-GG2
ELSEIF K2=3 THEN
FNCI=SHIFTVALUE*Q-1.
END IF
END DEF
REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DEF FNC110(I)
* Determines the coefficients of the objective function
SHARED L,NLNG,BIGM
LOCAL I1,K1,K2
FNC110=0.
IF I<L THEN
K2=I MOD 3
K1=(I-K2)/3
IF K2=1 OR K2=2 THEN FNC110=1.
ELSEIF I=L+NLNG THEN
FNC110=BIGM
END IF
END DEF
REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DEF FNAP(I,J)
' Determines the constraints’ coefficients of the dual problem
SHARED L,N,M,NLNG,NLNG1,W(),CYN,SHIFTVALUE
LOCAL J1,K1,K2,I1
FNAP=0.
IF I>NLNG THEN EXIT DEF
IF J>L THEN
FNAP=0.
IF J=(L+NLNGl) AND I=NLNG THEN
FNAP=-1.
ELSEIF J>L AND J<=(L+NLNG) AND I=(J-L) THEN
FNAP=1.
END IF
EXIT DEF
END IF
J1=J
IF I=1 THEN
FNAP=-CYN(J1)
EXIT DEF
END IF
K2=J1 MOD 3
K1=(J1-K2)/3
IF K2<>0 THEN
K1=K1+1
ELSE
K2=3
END IF
IF I<=(M+1) THEN
I1=I-1
IF K2=1 THEN
FNAP=-G (K1) *FNAB(2,11,K1)
ELSEIF K2=2 THEN
FNAP=G (K1) *FNAB(2,11,K1)
ELSEIF K2=3 THEN
FNAP=+FNAB(2,I1,Kl)
END IF
EXIT DEF
END IF
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IF I=N+M+2 THEN
IF K2=3 THEN FNAP=1.
EXIT DEF
END IF
I1=I-1-M
IF K2=3 THEN EXIT DEF
IF K2=1 THEN
FNAP=FNAB(1,I1,K1)
ELSEIF K2=2 THEN
FNAP=-FNAB(1,1I1,K1)
END IF
END DEF
REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
SUB OPTIM(T$,NLOOP)
> This subroutine uses the theory of the revise Simplex algorithm to solve
* efficiently the perceptible dual problem.
’ T$ -gives the Computing time
’ NLOOP -resultant integer which specifies the number of iteration needed.
SHARED L,NLNG,NLNG1,LMAX,PO(),X(),BIGM,BASIS()
DIM YK(NLNG1),YK1(NLNG1l),D(NLNG1),A(NLNG1,LMAX)
EPS1=1.E-8
EPS2=1.E-9
NLOOP=0
FOR I=L+1 TO L+NLNG
D(I-L)=I
NEXT I
FOR I=1 TO NLNG1l
FOR J=1 TO NLNG1
BASIS(I,J)=0.0
NEXT J
BASIS(I,I)=1.0
NEXT I
BASIS (NLNG1,NLNG)=BIGM
FOR J=1 TO LMAX
FOR I=1 TO NLNG
MI=I:MJ=J
A(MI,MJ)=FNAP(MI,MJ)
NEXT 1
NEXT J
IME$="00:00:00"
AXIA=1.
DO UNTIL AXIA<=0.
FOR I=1 TO NLNG1
YK(I)=0.
NEXT I
NLOOP=NLOOP+1
KDD=0
AX1=0.
FOR J=1 TO LMAX
FOR J2=1 TO NLNG
IF J=D(J2) THEN GOTO 1
NEXT J2
JI=J
DAXIA=0.
FOR K=1 TO NLNG
K9=K
DAXTA=DAXTA+BASIS (NLNG1,K)*A(K9,JJ)
NEXT K
JI=J
DAXTA=DAXIA-FNC110(JJ)
IF(DAXIA>AX1) THEN
AX1=DAXIA
KDD=J
END IF
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NEXT J
IF AX1<EPS1 THEN EXIT LOOP
AXIA=AX1
KD=KDD
FOR I=1 TO NLNG
FOR J=1 TO NLNG
YK(I)=YK(I)+BASIS(I,J)*A(J,KD)
NEXT J
IF(ABS(YK(I))<=(EPS2)) THEN YK(I)=0.
NEXT I
YK(NLNG1)=AX1
KT=0.
FOR I=1 TO NLNG
IF(YK(I)<=EPS2) THEN
YK1(I)=1.E+6
ELSE
KT=KT+1
YK1(I)=PO(I)/YK(I)
END IF
NEXT I
AM=YK1 (1)
AMY=YK(1)
KF=1
FOR I=1 TO NLNG
IF YK1(I)<AM THEN
AM=YK1(1)
AMY=YK(I)
KF=1
ELSEIF YK1(I)-AM=0. THEN
IF YK(I)>AMY THEN
AM=YK1(I)
AMY=YK(I)
KF=1
END IF
END IF
NEXT I
NKF=D (KF)
YA=YK(KF)
FOR I=1 TO NLNG1
IF I=KF THEN
YK(I)=(1./YA)-1.
ELSE
IF ABS(YK(I))>EPS2 THEN YK(I)=-YK(I)/YA
END IF
NEXT I
PP=PO (KF)
IF PP<>0. THEN
FOR J=1 TO NLNG
PO(J)=PO(J)+PP*YK(J)
NEXT J
END IF
FOR J=1 TO NLNG
BB=BASIS(KF,J)
IF BB<>0. THEN
FOR I=1 TO NLNG1l
BASIS(I,J)=BASIS(I,J)+BB*YK(I)
IF ABS(BASIS(I,J))<=EPS2 THEN BASIS(I,J)=0.0
NEXT 1
END IF
NEXT J
N1=D(KF)
D(KF)=KD
LOOP
TS=TIMES
END SUB
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REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
SUB XVAL(BASIS(2),X(1),T$,NLOOP)
* Determines and print on the screen the optimal solution of the primal problem.
SHARED NLNG,N,M,NLNG1,SHIFTVALUE
LOCAL I
CLS
X(1)=-1./BASIS(NLNG1,1)
FOR I=2 TO NLNG-1
X(I)=-X(1)*BASIS(NLNG1,I)-SHIFTVALUE
NEXT I
X(NLNG)=1.0/BASIS(NLNG1,NLNG)
LOCATE 2,12:PRINT " FINAL RESULTS:"
LOCATE 3,12:PRINT "DDDDDDDDDDDDDDDDD"
LOCATE 4,5:PRINT"ZDDDDDDDDDDDDDDDDDDDDDDDDDEDDDDDDDDDDDDDDDDDDDDDDDDDD? ™
LOCATE 5,5:PRINT USING "3 %=####### . #H#H#HIHIH#}T 3 = HEHEE 3";X(1);X(NLNG)
LOCATE 6,5:PRINT"CDDDDDDDDDDDDDDDDDDDDDDDDDEDDDDDDDDDDDDDDDDDDDDDDDDDDS
FOR I=1 TO N
LOCATE I+6,5:PRINT USING "3 a(##)=####### . HHHRHH#EHE" ;T X (14M+])
IF I>M THEN
LOCATE I+6,30:PRINT " 3 3"
END IF
NEXT I
FOR J=1 tO M
LOCATE J+6,30:PRINT USING " 3 b (##)=#H#t##### #taaididdd 3" ;3;X(1+7)
IF J>N THEN
LOCATE J+6,5:PRINT "3 "
END IF
NEXT J
IF I<J THEN I=J
LOCATE I+6,5:PRINT"CDDDDDDDDDDDDDDDDDDDDDDDDDEDDDDDDDDDDDDDDDDDDDDDDDDDDSG "
LOCATE I+7,5:PRINT USING "3 Loops = ###### 3 Computation time:";NLOOP
LOCATE I+7,50:PRINT TS$+"3"
LOCATE I+8,5:PRINT"@DDDDDDDDDDDDDDDDDDDDDDDDDADDDDDDDDDDDDDDDDDDDDDDDDDDY "
END SUB
REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
SUB PXVAL(BASIS(2),X(1),T$,NLOOP)
' Determines and print to the printer the optimal solution of the primal problem.
SHARED NLNG,N,M,NLNG1,SHIFTVALUE
LOCAL I,NM,NMD
CLS
X(1)=-1./BASIS(NLNG1,1)
FOR I=2 TO NLNG-1
X(I)=-X(1)*BASIS(NLNG1l,I)-SHIFTVALUE
NEXT I
X(NLNG)=1.0/BASIS(NLNG1,NLNG)
NM=N
IF N>M THEN NM=M
NMD=ABS (N-M)
LPRINT:LPRINT
LPRINT TAB(12):LPRINT " FINAL RESULTS:"
LPRINT TAB(12):LPRINT "DDDDDDDDDDDDDDDDD"
LPRINT TAB(5):LPRINT"ZDDDDDDDDDDDDDDDDDDDDDDDDDDBDDDDDDDDDDDDDDDDDDDDDDDDDD? "
LPRINT TAB(S5):LPRINT USING"3 S=####### . #Htitititiii# 3 =R . R 3";X(1) ;X(NLN
LPRINT TAB(5):LPRINT"CDDDDDDDDDDDDDDDDDDDDDDDDDDEDDDDDDDDDDDDDDDDDDDDDDDDDDS *
FOR I=1 TO NM
LPRINT TAB(S5) :LPRINT USING™3 a (##)=#H###HE . BUBHRHBHEH 3 D () =t pinsn sttt 3" 1, X(14M
NEXT I
IF M>NM THEN
FOR J=1 TO NMD
LPRINT TAB(5):LPRINT USING"3 3 b (##) =HEREHHY  HURBHBHHEH 3" ;NM+
NEXT J
ELSEIF N>NM THEN
FOR J=1 TO NMD
LPRINT TAB(S5):LPRINT USING"3 a(##)=H#H##1HHH . BHH###HHHEY 3 3" 05X
NEXT J
END IF
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LPRINT TAB(S5):LPRINT"CDDDDDDDDDDDDDDDDDDDDDDDDDDEDDDDDDDDDDDDDDDDDDDDDDDDDDS "
LPRINT TAB(S5):LPRINT USING "3 Loops = ###### 3 Computation time:";NLOOP;
LPRINT T$+" 3"

LPRINT TAB(5):LPRINT"@DDDDDDDDDDDDDDDDDDDDDDDDDDADDDDDDDDDDDDDDDDDDDDDDDDDDY "
END SUB
REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DEF FNGW(Y)
' Determines the ideal response for every sampling point.
FNGW=10.*EXP(-Y)+2.*EXP(-0.5*Y)+4.
END DEF
REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DEF FNAB(LL,I,K)
* This Function determines the values of the function Ai(Xk) and Bi(Xk).
* If LL=1 then AB(1,i,k)=Ai(Xk) while if LL=2 then AB(2,i,k)=Bi(Xk).
SHARED W()
IF LL=1 THEN
IF I=1 THEN
FNAB=1.
ELSE
FNAB=W(K)"(I-1)
END IF
ELSEIF LL=2 THEN

FNAB=W(K)"I
END IF
END DEF

APPENDIX B

Listing of functions FNGW(Y) and FNAB(LL, I, K) for
Example 2

REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DEF FNGW(Y)
’ Determines the ideal response for every sampling point.
LOCAL GGW,G1,G2,RP,RS
RP=0.4%3,141592:R8=0.55%3,141592:G1=1.:G2=0.04
IF Y<=RP THEN
GGW=G1
ELSEIF Y>=RS THEN
GGW=G2
ELSE
GGW=(G1-G2)*Y/ (RP-RS)+(RP*G2-RS*G1l) / (RP-RS)
END IF
FNGW=GGW
END DEF
REM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DEF FNAB(LL,I,K)
* This Function determines the values of the function Ai(Xk) and Bi(Xk).
' If LL=1 then AB(1,i,k)=Ai(Xk) while if LL=2 then AB(2,i,k)=Bi(Xk).
SHARED W()
AI=CSNG(I)
IF LL=1 THEN
FNAB=2.*COS ( (AI-1)*W(K))
ELSEIF LL=2 THEN
FNAB=2.*COS (AT*W(K))
END IF
END DEF
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